WAEC 2019- FURTHER MATHEMATICS

Direct Mobile: N800 MTN CARD

Link/Password: N600 MTN CARD

Link/Password: N600 MTN CARD

Send Subject name, Card Pins, Phone number via SMS to 08108097105

Transfer/VTU is accepted…… Call/text before making a transfer

After sending ur card, relax and wait for ur password in the morning of the exam day!

This page will be passworded 30mins before exam commence

FURTHER MATHS ANSWERS

FURTHER MATHS OBJ:

1-10: AACACBDABC

11-20: DAACCDBDAA

21-30: BCCBABABCC

31-40: BCCBCCDDDD

1-10: AACACBDABC

11-20: DAACCDBDAA

21-30: BCCBABABCC

31-40: BCCBCCDDDD

1(b)

F(x+2)-6x^2+5x-8 f(5

X+2=5

X=5-2

X=3

F(x+2)-6x^2+5x-8 f(5

X+2=5

X=5-2

X=3

6x^2 +5x-8

=6(3)^2 + 5(3)-8

=54+15-8

=6!

=6(3)^2 + 5(3)-8

=54+15-8

=6!

(2a)

Using y2 – y1/x2 – x1

Where y2 = 7, y1 = -5,

X2 = -2, and X1 = 7

Using y2 – y1/x2 – x1

Where y2 = 7, y1 = -5,

X2 = -2, and X1 = 7

7 – -5/-2 – 7

=7+5/-9

=12/-9

=4/-3

Coordinate points :

-4/3(3 : 2)

=-12/3 : -8/3

= -4 : -2⅔

X = (-4, 2⅔)

=7+5/-9

=12/-9

=4/-3

Coordinate points :

-4/3(3 : 2)

=-12/3 : -8/3

= -4 : -2⅔

X = (-4, 2⅔)

(2b)

2/1-√2 – 2/2+√2

=2(2+√2)-2(1-√2)/(1-√2)(2+√2)

=4+2√2 – 2+2√2/2+√2-2√2 – 2

=2 + 4√2/-√2

=(2+4√2)(-√2)/-√2(-√2)

= -2√2 – 4(2)/2

= -8 – 2√2/2

= -4 – √2

2/1-√2 – 2/2+√2

=2(2+√2)-2(1-√2)/(1-√2)(2+√2)

=4+2√2 – 2+2√2/2+√2-2√2 – 2

=2 + 4√2/-√2

=(2+4√2)(-√2)/-√2(-√2)

= -2√2 – 4(2)/2

= -8 – 2√2/2

= -4 – √2

(3)

Sn = A/2[2n+(n-1)d]

Where Sn = 165

a = -3, d = 2

165 = A/2[2(-3)+(n-1)2]

165 = n[-6+2n-2]/2

165×2 = n[2n – 8]

330 = 2n² – 8n

2n² – 8n – 330 = 0

n²-4n-165 = 0

Sn = A/2[2n+(n-1)d]

Where Sn = 165

a = -3, d = 2

165 = A/2[2(-3)+(n-1)2]

165 = n[-6+2n-2]/2

165×2 = n[2n – 8]

330 = 2n² – 8n

2n² – 8n – 330 = 0

n²-4n-165 = 0

Using -b±√b²-4ac/2a

4±√-4²-4(1)(-165)/2(1)

4±√-4²-4(1)(-165)/2(1)

4±√16 + 660/2

4±√676 = 4±26/2

4+26/2 = 30/2

= 15 terms

4±√676 = 4±26/2

4+26/2 = 30/2

= 15 terms

(4)

Draw the right angled triangle

Draw the right angled triangle

Using Pythagoras theorem

Third side = √(p+q)² – (p-q)²

=√(p+q+p-q)(p+q-p+q)

Difference of two squares.

=√(2p)(2q)

=√4pq

Adjacent side = 2√pq

Third side = √(p+q)² – (p-q)²

=√(p+q+p-q)(p+q-p+q)

Difference of two squares.

=√(2p)(2q)

=√4pq

Adjacent side = 2√pq

Tanx = opp/adj = p – q/2√pq

1 – tan²X = 1-(p-q)²/4pq

=(4pq)-(p²-2pq+q²)/4pq

= -p²+6pq-q²/4pq

= -(p² – 6pq + q²)/4pq

1 – tan²X = 1-(p-q)²/4pq

=(4pq)-(p²-2pq+q²)/4pq

= -p²+6pq-q²/4pq

= -(p² – 6pq + q²)/4pq

(5)

Draw the diagram

Draw the diagram

Using cosine law

Cos∅ = 16²+10²-14²/2(16)(10)

Cos∅ = 16²+10²-14²/2(16)(10)

Cos∅ = 256 + 100 – 196/320

Cos∅ = 160/320

Cos∅ = 0.5

∅ = cos-¹(0.5)

∅ = 60°

Cos∅ = 0.5

∅ = cos-¹(0.5)

∅ = 60°

Angle between 10N and 16N

= 180 – ∅ (sum of angles on a straight line)

= 180 – 60

=120°

= 180 – ∅ (sum of angles on a straight line)

= 180 – 60

=120°

(6)

Draw the diagram

Taking moment about the pivot,

(T × 25)=(50×10)+(20×45)

25T = 500 + 900

25T = 1400

T = 1400/25

T = 56N

Draw the diagram

Taking moment about the pivot,

(T × 25)=(50×10)+(20×45)

25T = 500 + 900

25T = 1400

T = 1400/25

T = 56N

(7)

In a tabular form

Under class interval:

1-5, 6-10, 11-15, 16-20, 21-25, 26-30

In a tabular form

Under class interval:

1-5, 6-10, 11-15, 16-20, 21-25, 26-30

Under class mark (X):

3, 8, 13, 18, 23, 28

3, 8, 13, 18, 23, 28

Under X-Xbar:

-10, -5, 0, 5, 10, 15

-10, -5, 0, 5, 10, 15

Under frequency:

18, 12, 25, 15, 20, 10

Ef = 100

18, 12, 25, 15, 20, 10

Ef = 100

Under f(X – XbarA):

-180, -60, 0, 75, 200, 150

f(X – XbarA) = 185

-180, -60, 0, 75, 200, 150

f(X – XbarA) = 185

Where xA = 13

Mean = xA + Ef(X – Xbar)/Ef

=13 + 185/100

=13 + 1.85

=14.85years

=13 + 185/100

=13 + 1.85

=14.85years

PLS NOTE THAT XBAR LOOKS LIKE X WITH MINUS SIGN ON TOP.

(10a) given 4x² – px +1 = 0

For real roots: b² – 4ac >0

(-p) ² – 4(4) (1) > 0

p² – 16 > 0

p² >16

p > ± 4

For real roots: b² – 4ac >0

(-p) ² – 4(4) (1) > 0

p² – 16 > 0

p² >16

p > ± 4

(10bi) Given: (1 +3x)⁶

Using pascal’s triangle: 1, 6, 15, 20, 15, 6, 1

(1)⁶(3x)ΒΊ + 6(1)⁵ (3x)¹ + 15 (1)⁴ (3x)₂ + 20(1)³ (3x)³ + (15) (1)²(3x)⁴+6(1)¹(3x)⁵ + 1(1)ΒΊ(3x)⁶

1 + 6(3x) + 15 (9x²) + 20 (27x³) + 15 (81x⁴) + 6(243 x⁵) 729x⁶

1 + 18x + 135x² + 540x³ + 1215x⁴ 1458x⁵ + 729x⁶

Using pascal’s triangle: 1, 6, 15, 20, 15, 6, 1

(1)⁶(3x)ΒΊ + 6(1)⁵ (3x)¹ + 15 (1)⁴ (3x)₂ + 20(1)³ (3x)³ + (15) (1)²(3x)⁴+6(1)¹(3x)⁵ + 1(1)ΒΊ(3x)⁶

1 + 6(3x) + 15 (9x²) + 20 (27x³) + 15 (81x⁴) + 6(243 x⁵) 729x⁶

1 + 18x + 135x² + 540x³ + 1215x⁴ 1458x⁵ + 729x⁶

(ii) (1.03)⁶ = (1 + 3(0.01)]

Therefore (1.03)⁶ = 1 + 18(0.01) + 135 (0.01)² + 540(0.01)³ + 1215(0.01)⁴

Therefore (1.03)⁶ = 1 + 18(0.01) + 135 (0.01)² + 540(0.01)³ + 1215(0.01)⁴

- 1458 (0.01)⁵ + 729 (0.01)⁶
- 1 + 0.18 + 0.0135 + 0.005 + 0.00001215
- 0.0000001458 + 0.000000000729

= 1.1940523

= 1.194 (4s.f)

(12) prob (pass) = 60% = 60/100 =3/5

Prob (fail) 1-3/5 = 2/5

(a) Prob (atleast two failed) = 1 – prob (ome pass)

= 1 – 10Ci (3/5)¹ (2/5)⁹

1 – (10!/9!) (3/5) (2/5)⁹

= 1 – 10 (3/5) (2/5)⁹

= 1 – 10 (3/5) (0.000262144))

= 1 – 0.001572864

= 0.9984

Prob (fail) 1-3/5 = 2/5

(a) Prob (atleast two failed) = 1 – prob (ome pass)

= 1 – 10Ci (3/5)¹ (2/5)⁹

1 – (10!/9!) (3/5) (2/5)⁹

= 1 – 10 (3/5) (2/5)⁹

= 1 – 10 (3/5) (0.000262144))

= 1 – 0.001572864

= 0.9984

(12b) prob (exastly half passed)

= 10C5 (3/5)⁵ (2/5)⁵

= 10!/5!5! (6/25)⁵

= 252 (6/25)⁵

= 252 x 0.0007962624

= 0.2007

= 10C5 (3/5)⁵ (2/5)⁵

= 10!/5!5! (6/25)⁵

= 252 (6/25)⁵

= 252 x 0.0007962624

= 0.2007

(12c) prob (at most two failed)

= prob (zero/fail) + prob (one/fail) +prob (two/fail)

= 10C (2/5)ΒΊ (3/5)10 + 10C (2/5)¹ (3/5)⁹ + 10 C2(2/5)² (3/5)⁸

= (3/5)10 + 10 (2/5) (3/5)⁹ + 45 (2/5)²(3/5)⁸

= 0.060466176 + 0.040310784 + 0.120932352

= 0.1673

= prob (zero/fail) + prob (one/fail) +prob (two/fail)

= 10C (2/5)ΒΊ (3/5)10 + 10C (2/5)¹ (3/5)⁹ + 10 C2(2/5)² (3/5)⁸

= (3/5)10 + 10 (2/5) (3/5)⁹ + 45 (2/5)²(3/5)⁸

= 0.060466176 + 0.040310784 + 0.120932352

= 0.1673

## No comments:

## Post a Comment